Tectonic Mapping of Mare Frigoris Using Lunar Reconnaissance Orbiter Camera Images

N. R. Williams¹, J. F. Bell III¹, T. R. Watters², M. E. Banks², M. S. Robinson¹

¹Arizona State University School of Earth and Space Exploration; ²Smithsonian Institution National Air and Space Museum; (nrwilli2@asu.edu)

Abs. #: 2708

Introduction and Motivation

- Previous work suggested that extensional tectonism on the Moon largely ended ~3.6 billion years ago¹ and contractional deformation ended ~1.2 billion years ago²
- Wrinkle ridges are often associated with mascons (large positive gravity anomalies),³ yet ridges occur in Mare Frigoris even though no mascon is observed
- Lunar Reconnaissance Orbiter Camera (LROC) enables the discovery of new populations of lobate scarps, wrinkle ridges, and graben at scales not previously imaged^{4,5,6}

_andforms

- a. Lobate Scarp: A simple curvilinear, asymmetric hill formed by near-surface fault^{4,5,7} (Figs. 1a&4)
- b. Wrinkle Ridge: A complex of curvilinear, asymmetric hills formed by folding over a blind fault^{2,8,9} (Figs. 1b&4)
- c. Graben: A trough formed

Methods

- LROC Narrow Angle Camera (NAC) images with meter-scale resolution
- Swath of nearly continuous image coverage from 55°N to 67°N and 50°W to 15°E
- Map tectonic landforms in NACs using ArcGIS
- Infer principal stress directions and sources from landform orientations and distributions
- Compare overlapping images with different lighting

Landform morphology⁷ and stratigraphic relationships imply a complex history of deformation of the lunar crust

between two normal faults⁶ (Figs. 1c&5)

Fig. 1: Block diagrams of a) lobate scarp, b) wrinkle ridge, and c) graben

conditions

Landform Distribution

- Cumulative lengths of ~3000 km of wrinkle ridges, 270 km of lobate scarps, and 40 km of graben
- Ridges and scarps often (but not always) parallel mare-highland boundaries
- Influenced by basin loading, boundary conditions, changes in mechanical properties, or all of the above?^{3,8,9}

Fig. 2: Length-weighted rose diagrams of wrinkle ridges and lobate scarps. Preferred orientations suggest an anisotropic stress field.

🔶 Graben

20[°]W 15 W Fig. 3: Tectonic map of western and central Mare Frigoris overlain on LROC WAC+NAC mosaic of area examined

Ridge-scarp Transitions

- Several complex wrinkle ridges transition to simpler lobate scarps at mare-highland boundary
- Some deformation across transition likely concurrent
- Previous estimates of age ranges for ridges and scarps don't overlap^{2,4,5}
- If <1 billion years old, ridges could accommodate strain from late-stage global radial contraction

Fig. 4: A ridge-scarp transition along the northern edge of Mare Frigoris

Graben

- Often parallel or perpendicular to nearest ridge or scarp
- Consistent with stress field expected during ridge growth
- Some have pit crater chains similar to Vitello graben⁶
- Similar meter-scale graben estimated to be <50 million years old⁶
- Formed by flexural bending or intrusive inflation?⁶

Fig. 5: Cluster of small graben and pit crater chains (red arrows) next to a wrinkle ridge

Lighting Bias Test

- Compared images with solar incidence >75° to mapped images with incidences down to ~60°

Future Work

- Extend tectonic map spatial coverage
- Examine additional images with different lighting
- Constrain ages with crater counts and regolith diffusion

Conclusions

- More complex and extensive tectonism than previously identified in Mare Frigoris
- Orientation and distribution controlled by

References

¹Lucchitta B. K. and Watkins J. A. (1978) LPS 9, 3459-3472. ²Hiesinger et al. (2003) JGR, 108, E001985. ³Solomon S. C. and Head J. W. (1980) Rev. Geophys. & Space Phys., 18, 107-141. ⁴Binder A. B. and Gunga H. C. (1985) Icarus, 63, 421-441. ⁵Watters T. R. et al. (2010) Science, 329, 936-940. ⁶Watters T. R. et al. (2012) Nature Geosci., doi:10.1038/ngeo1387. ⁷Banks M. E. et al (2012) JGR, in press. ⁸Schultz R. A. (2000) JGR 105, 12035-12052. ⁹Watters T. R. (2004) Icarus 171, 284-294. ¹⁰Williams N. R. et al. (2011) AGU Annual Meeting Poster P43D-1707.

graben undetected

Lighting bias primarily against very low-relief features

Orientations not significantly biased

models⁶

- Examine landform topography with Lunar Orbiter Laser Altimeter (LOLA) and model subsurface geometries¹⁰
- Estimate stress magnitudes and compare to basin evolution models

basin-localized influences

Possible genetic relationship between some scarps, wrinkle ridges, and graben

Some wrinkle ridge deformation may be

more recent than previously thought