Tectonic Mapping of Mare Frigoris Using Lunar Reconnaissance Orbiter Camera Images

N. R. Williams ${ }^{1}$, J. F. Bell III 1 , T. R. Watters², M. E. Banks², M. S. Robinson ${ }^{1}$
${ }^{1}$ Arizona State University School of Earth and Space Exploration;
${ }^{2}$ Smithsonian Institution National Air and Space Museum; (nrwilli2@asu.edu)

Abs. \#: 2708

Introduction and Motivation

- Previous work suggested that extensional tectonism on the Moon largely ended ~ 3.6 billion years ago ${ }^{1}$ and contractional deformation ended ~ 1.2 billion years ago ${ }^{2}$
- Wrinkle ridges are often associated with mascons (large positive gravity anomalies), ${ }^{3}$ yet ridges occur in Mare Frigoris even though no mascon is observed
- Lunar Reconnaissance Orbiter Camera (LROC) enables the discovery of new populations of lobate scarps, wrinkle ridges, and graben at scales not previously imaged ${ }^{4,5,6}$
- Landform morphology ${ }^{7}$ and stratigraphic relationships imply a complex history of deformation of the lunar crust

Landforms

a. Lobate Scarp: A simple curvilinear, asymmetric hill formed by near-surface fault ${ }^{4,5,7}$ (Figs. 1a\&4)
b. Wrinkle Ridge: A complex of curvilinear, asymmetric hills formed by folding over a blind fault $2,8,9$ (Figs. 1b\&4)
c. Graben: A trough formed between two normal faults ${ }^{6}$ (Figs. 1c\&5)

Fig. 1: Block diagrams of a) lobate scarp, b) wrinkle ridge, and c) graben

Methods

- LROC Narrow Angle Camera (NAC) images with meter-scale resolution
- Swath of nearly continuous image coverage from $55^{\circ} \mathrm{N}$ to $67^{\circ} \mathrm{N}$ and $50^{\circ} \mathrm{W}$ to $15^{\circ} \mathrm{E}$
- Map tectonic landforms in NACs using ArcGIS

Infer principal stress directions and sources from landform orientations and distributions

- Compare overlapping images with different lighting conditions

Landform Distribution

- Cumulative lengths of $\sim 3000 \mathrm{~km}$ of wrinkle ridges, 270 km of lobate scarps, and 40 km of graben
- Ridges and scarps often (but not always) parallel mare-highland boundaries - Influenced by basin loading, boundary conditions, changes in mechanical properties, or all of the above? $3,8,9$

Fig. 2: Length-weighted rose diagrams of wrinkle ridges and lobate scarps. Preferred orientations suggest an anisotropic stress field.

Fig. 3: Tectonic map of western and central Mare Frigoris overlain on LROC WAC+NAC mosaic of area examined

Ridge-scarp Transitions

- Several complex wrinkle ridges transition to simpler lobate scarps at mare-highland boundary
- Some deformation across transition likely concurrent Previous estimates of age ranges for ridges and scarps don't overlap2,4,5
If <1 billion years old, ridges could accommodate strain from late-stage global radial contraction

Fig. 4: A ridge-scarp transition along the northern edge of Mare Frigoris

Graben

- Often parallel or perpendicular to nearest ridge or scarp - Consistent with stress field expected during ridge growth - Some have pit crater chains similar to Vitello graben ${ }^{6}$
- Similar meter-scale graben estimated to be <50 million years old ${ }^{6}$
- Formed by flexural bending or intrusive inflation? ${ }^{6}$

Conclusions

- More complex and extensive tectonism than previously identified in Mare Frigoris
Orientation and distribution controlled by basin-localized influences
- Possible genetic relationship between some scarps, wrinkle ridges, and graben
- Some wrinkle ridge deformation may be more recent than previously thought

Fig. 5: Cluster of small graben and pit crate chains (red arrows) next to a wrinkle ridge

Lighting Bias Test

Compared images with solar incidence $>75^{\circ}$ to mapped images with incidences down to $\sim 60^{\circ}$
Only a few very small, low-relief graben undetected
Lighting bias primarily against very low-relief features

- Orientations not significantly biased by lighting

Future Work

- Extend tectonic map spatial coverage
- Examine additional images with different lighting
- Constrain ages with crater counts and regolith diffusion models ${ }^{6}$
- Examine landform topography with Lunar Orbiter Lase Altimeter (LOLA) and model subsurface geometries ${ }^{10}$
- Estimate stress magnitudes and compare to basin evolution models

References

Lucchitta B. K. and Watkins J. A. (1978) LPS 9, 3459-3472. 2 Hiesinger et al. (2003) JGR, 108, E001985. ${ }^{3}$ Solomon S. C. and Head J. W. (1980) Rev. Geophys. \& Space Phys., 18, 107-141. ${ }^{4}$ Binder A. B. and Gunga H. C. (1985) Icarus, 63 , 421-441. 5 Watters T. R. et al. (2010) Science, 329, $936-940$. ${ }^{6}$ Watters T. R. et al. (2012) Nature Geosci., doi:10.1038/ngeo1387. 'Banks M. E. et al (2012) JGR, in press. 8Schultz R. A. (2000) lcarus 171 284-294 10 Williams N. R. et al

