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1. Introduction

Spectral signatures of aqueously altered minerals have been
identified from orbit and at the surface (Opportunity rover) at
Meridiani Planum and have been remotely identified at several
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. Methods

CRISM [7] Multispectral Survey (MSP) and Full-Resolution Targeted (FRT)
sequences in the mapped region (0-6°S, 3.5-10°W) were atmospherically

corrected for CO, absorptions in ENVI with CRISM Analysis Tools software [8]
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potential landing sites in Margaritifer Terra [1-3]

* Phyllosilcate deposits are exposed on both sides of this
regional boundary near Miyamoto Crater at different
elevations and in different geologic units

* We present a regional geologic map and cross sections,
which tie deposits at candidate landing sites [4-6] to a
common geologic timeline

A regional phyllosilicate strength map was constructed from a “survey

mode” CRISM D2300 parameter mosaic [9]

Reflectance spectra of high phyllosilicate signature regions are compared to

the CRISM spectral library [10]

Geologic map was created using JMARS and ArcMap software, THEMIS, CTX,
and HiRISE images, MOLA and HRSC digital terrain models (DTMs) [11-17]

Cross sections hypothesized relating candidate landing sites

Fig. 1: MOLA [16] colorized elevation
map marking extent of mapped region.
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PFM browse product

Fig. 2: CRISM sequence FRTOOD0AE19 intersects the footprint of the lower
resolution MSP0004886 and exhibits Mg/Fe rich phyllosilicates (Smectite?) 19
in cyan for the PFM browse product defined in Viviano et al 2014. [18] :
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3. Results
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Fig. 4: Regional phyllosilicate strength map from mosaicked CRISM MSP strips

(200m/pixel) over THEMIS Day IR.

GEOLOGIC MAP

Fig. 5: Geologic map highlights morphological units with separate depositional and erosional
processes. THEMIS night IR, CTX, and HiRISE images were used to follow contacts.

ALTERATION MAP

Fig. 6: Alteration map smooths phyllosilicate bearing units between survey mode coverage gaps by
following associated THEMIS night IR (albedo, shade, texture) and CTX images (color, morphology).
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Fig. 7: Selected map units for reference with Figs. 5, 11.

* High resolution images were used
to examine stratigraphic relations

« Inall cases, surficial phyllosilicates
had been exhumed from beneath
one or more units

Fig. 8: Hynek & Di Achille 2014. [22] Fig. 9: Wiseman et al 2010. [20]

4. Consistency with Existing Maps

Fig. 10: Tanaka et al. 2014. [23]
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Fig. 11: Cross section from Fig. 5 shows interpreted stratigraphy

Depositional sequence consistent with other local
maps [5,19,20]

Multiple episodes of aqueous activity, not necessarily
consistent with global depositional event

Most deposits exhumed from beneath thin capping
layer (sedimentary/volcanic)

Aeolian transport unlikely according to [24], this study
more consistent with fluvial travel or in-situ formation
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